

High p_T Jets and Photons at the Tevatron

Cecilia E. Gerber
University of Illinois-Chicago

for the CDF & DØ Collaborations

Hadron Collider Physics Symposium 2005 LES DIABLERETS, SWITZERLAND, 4-9 July 2005

Outline

- Jets
 - Dijet azimuthal decorrelation
 - D-Zero result accepted by PRL
- b-Jets
 - SecVtx & muon-tagged jets
 - New CDF & D-Zero results Spring 2005
- Photons
 - Prompt Diphoton Cross Section
 - CDF result accepted by PRL
 - Isolated Photon Cross Section
 - New D-Zero result for this conference

Dijet $\Delta \phi_{12}$ Distributions

- No radiation
 - 2 jets of equal p_T
 - Correlated $\Delta\Phi_{12} = \pi$
- Soft radiation
 - $-\Delta\Phi_{12}\approx\pi$
 - pQCD diverges (k_T →0)
- Hard radiation
 - $-\Delta\Phi_{12} << \pi$
- Exclusive 3-jet production

$$-2\pi/3 < \Delta\Phi_{12} < \pi$$

- Events with ≥ 4 jets
 - $-\Delta\Phi_{12} < 2\pi/3$

 $\Delta\phi_{12}$ distribution is directly sensitive to higher order QCD radiation without explicitly measuring the third jet

Dijet production in lowest-order pQCD

3-jet production in lowest-order pQCD

Dijet Azimuthal Decorrelations

accepted by PRL, hep-ex 0409040

- Jets are reconstructed with an iterative seed based cone algorithm including mid-points with $R_{cone} = 0.7$
 - Used for partons in pQCD calculations, final-state particles in MC event generators and energy depositions in the calorimeter
- Leading Jet p_T > 75, 100, 130 and 180 GeV
 - define 4 analysis regions
- Second leading jet p_T > 40GeV
- Both jets have |y| < 0.5
- $\int \mathcal{L} \, dt \sim 150 \, \text{pb}^{-1}$

Dijet Azimuthal Decorrelations

$$rac{1}{\sigma_{ extit{dijet}}} rac{d\sigma_{ extit{dijet}}}{d\Delta\phi_{ extit{dijet}}}$$

- ΔΦ spectra more strongly peaked at $\sim \pi$ for larger p_T ,
 - Increased correlation in $\Delta\Phi_{12}$
- LO 3-jet production
 - Divergence at $\Delta \Phi_{12} = \pi$ when 3rd jet is soft
 - No phase-space at $\Delta \Phi_{12} < 2\pi/3$
- NLO 3-jet production
 - Good description
 - Fixed order QCD fails at π

 $\pi/2$

Dijet Azimuthal Decorrelations

 $3\pi/4$

- PDF uncertainty
 - Solid line, 5-10%
- Scale variation
 - Shaded area
 - larger for $\Delta \phi < 2\pi/3$ (only tree-level 4-parton final states included)
- Fixed order pQCD fails at $\Delta \phi \approx \pi$ where soft processes dominate

NLO pQCD provides a good description of the data.

 $\Delta \phi_{
m dijet}$ (rad)

Dijet Azimuthal Decorrelations

- HERWIG 6.505 describes the data well
- PYTHIA 6.225 does not
- Tuning of PYTHIA allows for large variation of prediction
 - Shown here is range resulting from increasing ISR by a factor of 4.

Data can be used to tune LO 2→2 pQCD ME + parton shower Monte Carlo generators

Inclusive b-jet Cross Sections

- Important quantitative test of QCD
 - large mass of b-quark justifies perturbative expansion in α_s
 - NLO pQCD expected to agree with data
- Extends upper reach of exclusive measurements using B-mesons
- Theoretical uncertainties on fragmentation and decay are smaller for the inclusive case
- Simple observable with high sensitivity to heavy flavor production up to highest p_T
 - Sensitive to new physics
 - Compositeness: third generation would show largest deviation from point-like SM behavior

b-Jet Identification

- B hadrons travel Lxy~3mm before decaying with large charged track multiplicity
 - Look for displaced vertices

Secondary Vertex Tag

- b-quarks decay semileptonically
 - Leptons are softer and less isolated than the ones from W/Z bosons

- $b \rightarrow \ell \nu c \text{ (BR} \sim 20\%)$
- $b \rightarrow c \rightarrow \ell \nu s \text{ (BR } \sim 20\%)$

Soft Lepton Tag

b-jet Cross Section

Jets

- $R_{cone} = 0.7$
- $38 \text{GeV} < p_T < 400 \text{ GeV}$
- -|y| < 0.7
- Corrected for detector effects
- $\int \mathcal{L} \, dt \sim 300 \, \text{pb}^{-1}$
- b-tagging
 - 2-dim SecVtx algorithm
 - Subcone R=0.4
- b-tagging efficiency
 - measured in bins of jet p_T using a MC dijet sample
 - corrected with SF=Data/MC from inclusive electron sample

flavor composition of sample

- Extract fraction of b-tagged jets from data using shape of mass of secondary vertex as discriminating quantity
 - bin-by-bin as a function of jet p_T
 - Use PYTHIA to generate templates

b-jet Cross Section

Systematic Error	$lowP_{\!T}$	high P_T
Luminosity	6%	6%
Absolute Energy Scale	15-20%	40%
Jet energy resolution	6%	6%
B-tagging efficiency	10%	15%
B-tagged jets fraction	10-15%	40%
Unfolding	8%	8%

- Error on the last 6 bins dominated by b-tagged jets fraction
- Data/PYTHIA Tune A ~ 1.4
 in agreement with expectation
- comparison with NLO coming soon

C. Gerber - HCP 2005

Inclusive µ-tagged Jets Cross Section

Jets

- Jet triggers (4 thresholds)
- Rcone = 0.5
- |y| < 0.5

Muons

- Track in Muon detector matched to Central track
- $-p_T > 5 \text{ GeV}$
- DR(jet, μ) < 0.5
 - enhanced in HF jets
- JL dt ~ 294 pb-1
- 4,460 jets with muons

Data is corrected by efficiencies and unsmeared by p_T resolution.

b/c μ-tagged Jets

- Inclusive μ-tagged cross section includes
 - b/c semi-muonic decays
 - in flight decays of Pions and Kaons (detector specific)
- Determine fraction of µtagged Jets originating from b or c quark decay from PYTHIA with full GEANT detector simulation

Large errors reflect limited MC statistics

Dashed error band is conservative 20%

μ-tagged b/c-Jets Cross Section

- Data unsmeared and corrected for fraction of μ-jets from b/c
- Result presented as a ratio with b/c jet x-sec from PYTHIA
- Compared with
 - PYTHIA
 - inclusive NLOJET++ jet x-sec corrected for fraction of μ-jets from b/c from PYTHIA
- experimental error dominated by JES
- At low p_T, HV content error becomes important

Data lies between the two calculations

Need to reduce the JES errors to compare to compositeness models

Photon Studies

- Dominant source of production for $p_T \lesssim 150$ GeV is prompt γ through Compton scattering $q + g \rightarrow q + \gamma$
 - Production cross section is sensitive to the gluon PDF
 - Test of NLO pQCD, soft gluon resummation and phenomenological models of gluon radiation & photon isolation.

- Signature of interesting physics
 - Di-photon final state is one of the main Higgs discovery channels at LHC
 - Possible signature of physics beyond the SM

QCD production dominates:

understanding the QCD production mechanism is a prerequisite to search for new physics

Diphoton Production

- gg process suppressed by a factor αk_S^2 , but noticeable at low di-photon mass.
- Background from neutral mesons (π^0, η) decaying to multiple photons

Accepted by PRL, hep-ex/0412050

- Two Isolated EM showers in calorimeter
 - No associated track
 - $|\eta| < 0.5$
 - $E_T > 14 \text{ GeV } \& 13 \text{ GeV}$
- $\int \mathcal{L} dt \sim 207 \text{ pb}^{-1}$
- Background is statistically separated from signal based on differences in the EM showers in the CDF detector.
- Theoretical Predictions
 - PYTHIA (LO QCD)
 - DIPHOX (NLO QCD)
 - ResBos
 - Hard scatter at NLO
 - Fragmentation at LO
 - Resummation of ISR

Diphoton Mass Distribution

DIPHOX Prediction with (without) solid (dashed) gg contribution (Linear Scale)

- DIPHOX (solid)
- ResBos (dashed)
- PYTHIA (dot-dashed) scaled by a factor of 2
- Fairly good agreement between data and pQCD.
 - Low mass Diphoton production serves as interesting arena to study production from a gg initial state at the Tevatron.

p_T of Diphoton System

- DIPHOX (solid)
- ResBos (dashed)
- PYTHIA (dot-dashed) scaled by a factor of 2

AT LARGER pT

• DIPHOX (dot) & CDF data (open squares) when $\Delta\Phi < \pi/2$

- Low p_⊤ region
 - DIPHOX Unstable (NLO calculation divergent)
 - RESBOS (includes soft gluon resummation) describes data
- High p_T region
 - Fragmentation included at NLO (DIPHOX) and LO (ResBos). Extra phase space accessible at NLO to DIPHOX results in 'shoulder"

$\Delta \phi$ between the 2 Photons

Overall, Diphoton data is consistent with pQCD predictions

- DIPHOX (solid)
- ResBos (dashed)
- PYTHIA (dot-dashed)
 scaled by a factor of 2
- - NLO contributions, better agreement with DIPHOX
- - Gluon resummation contributes, better agreement with ResBos

Isolated Photon Cross Section

- At least one Isolated EM shower in calorimeter
 - No associated track
 - $|\eta| < 0.9$
 - $E_T > 15 \text{ GeV}$
- $\int \mathcal{L} dt \sim 326 \text{ pb}^{-1}$
- NN is trained to discriminate between signal and EM jets
 - Keep events with NN output > 0.5
- Photon purity obtained from fit to NN output in data to MC predictions for signal and EM jets from data.

Isolated Photon Cross Section

$$\frac{d^2\sigma}{dp_T^{\gamma}d\eta^{\gamma}} = \frac{N_{umber} P_{urity} f_{unsmear}}{L \Delta p_T^{\gamma} \Delta \eta^{\gamma} A \varepsilon}$$

- Data shown with Stat + Syst Errors & unfolded for calorimeter resolution.
- Theory is NLO QCD prediction from JETPHOX, with $\mu_{F,R,f} = p_T(\gamma)$ and CTEQ6.1M

Prediction describes Data within experimental uncertainties

Isolated Photon Cross Section

Good agreement with NLO QCD with CTEQ6.1M (from JETPHOX)

Prediction from Gordon and Vogelsang (1993) within 7%

Conclusions and Outlook

- Dijet Azimuthal Decorrelation was measured in different ranges of leading jet p_T
 - Increased decorrelation towards greater p_T
 - NLO pQCD describes data well except at large Δφ where calculation is not predictive
 - Data can be used to tune Monte Carlo Event Generators
- Inclusive b-jet x-sec SecVtx & μ tag
 - Preliminary results show no surprises
 - Working towards improved analysis techniques and comparisons with theory
- Photons
 - General agreement with NLO pQCD predictions

Understanding QCD is not only important in itself, but crucial for many SM measurements and searches for new physics